Abstract

Endostatin can specifically inhibit endothelial proliferation and potently inhibit angiogenesis and tumor growth. N-Terminal site-specific mono-PEGylation of recombinant human endostatin (mPEG-rhES) was accomplished by using methoxy poly-ethylene glycol (mPEG) propionaldehyde with an average molecular weight of 5000 Da through a reactive terminal aldehyde group. The site-specific mPEG conjugation was conducted under optimal conditions, which were identified through a statistical L(9)(3(4)) orthogonal test. In this study, we have investigated the stability and antitumor activity of mPEG-rhES. SDS-PAGE, RP-HPLC, and UV spectrophotometric analysis were used to identify the purity and stability of mPEG-rhES. When incubated with protease or placed in an extreme environment, mPEG-rhES was more stable than rhES. The unmodified and PEGylated rhES were tested for their ability to inhibit the tumor growth of mouse H22 liver cancer in male mice. In a multiple versus single doses comparison study, daily administration of 0.25, 0.50, and 1.00 micromol/kg of unmodified rhES for 7 days resulted in 26.9%, 43.0%, and 64.9% reductions in tumor weight, respectively, while single doses of 0.13, 0.25, and 0.50 micromol/kg of the PEGylated protein per day resulted in 24.8%, 38.0%, and 64.5% reductions, respectively. Both treatments resulted in statistically significant reductions in mean tumor weight as compared to the physiological saline solution (control)-treated mice, with the dose of mPEG-rhES being a half of rhES, respectively, while the tumor inhibition rates were similar. Therefore, it is suggested that PEGylation enhances the stability of rhES and improves its antitumor activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.