Abstract

The solar-driven thermochemical CO2-to-CO conversion is an effective way to achieve the mission of carbon peaking and carbon neutrality. However, synthesizing porous reacting materials with excellent thermal stability, hardness and long-term cyclic stability, oxygen exchange capacity, and higher CO2-to-CO conversion are the most important challenges associated with the thermochemical CO2-splitting approach and technological upscaling to large-scale applications. This study presented the development of NiFe2O4 oxygen carriers, the synthesis method of SiC and Si3N4 supports, and solar-to-fuel processing of the newly prepared materials through CO2-splitting under a highly concentrated solar radiative heat flux. The newly synthesized NiFe2O4@SiC porous redox material resulted in higher solar energy absorption and CO2 conversion capability with an instantaneous CO production of 410 μmol/g and direct CO2-to-CO conversion rate of 18.1 % at 1073–1273 K reaction temperature. The media composite of NiFe2O4@SiC exhibited high-temperature thermal changes, good thermochemical reaction stability, and a higher CO production rate through six redox cycles compared to NiFe2O4@Si3N4 porous reacting material. The high oxidation potential and remarkably solar radiative heat flux absorption and thermochemical CO2-splitting capacities of the newly developed materials were demonstrated through experimental analysis. The synergistic effect of the oxygen carriers (NiFe2O4) and substrate materials including SiC and Si3N4 skeletons for CO2-splitting is highlighted. This study provided comprehensive and novel experimental insights that can be used as guidance for theoretical research and application in CO2 conversion into high-value-added energy products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.