Abstract
ABSTRACTMolten salt has been regarded as a versatile and environmental-friendly method for the material preparation and waste destruction. In this work, molten FeCl3 was utilized for the generation of magnetic biochar (MBC) derived from simultaneous activation and magnetization of biomass. The sample characterization indicated that MBC had a rough surface with BET surface area of 404 m2/g and total pore volume of 0.35cm3/g. Highly dispersed Fe3O4 and nitrogen could be deposited on the surface, leading to an excellent magnetization property. The MBC exhibited a great 2,4-Dichlorophenol (2.4-DCP) and atrazine removal performance in solution with the maximum adsorption capacity achieved 298.12 mg/g and 102.17 mg/g. Kinetics results demonstrated that MBC adsorption met the Pseudo-first-order model better. Molten NaOH-Na2CO3 was provided for the re-activation of exhausted MBC. 2,4-DCP was firstly desorbed from the MBC and subsequently destructed by the active species in the melt medium. Chlorine can be captured in the molten alkaline medium from the XRD pattern of residues.The MBC could be easily recovered with a yield of 98.2% and fixed carbon content of 61.0% after the molten salt regeneration process. With no 2,4-DCP detected, 65.5% and 31.69% of initial Cl was found in washing water and residues with the molten NaOH-Na2CO3, respectively. After 4 cycles of regeneration and adsorption, 60.55%-72.22% of initial adsorption capacity can be kept. This preparation and regeneration method can be an effective way to reduce the risk of secondary pollution of chlorinated organic compounds during adsorbent regeneration.Implications: Molten salt (MS) is a salt or multiple salts with a low melting point, and has been applied in many sectors and is regarded as a crucial role in terms of energy, environmental, and resource sustainability. In our paper, magnetic biochar was prepared by one-step activation and magnetization of fir dust using molten FeCl3∙6H2O. Meanwhile, a regeneration method using molten alkaline salt was provided. Magnetic biochar generated in our study performed well in the 2,4-dichlorophenol and atrazine adsorption. After four cycles of regeneration and adsorption, 72.2% of initial 2,4-DCP adsorption capacity can be kept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.