Abstract

A series of waterborne cationic polyurethanes dispersions (CWPU) was prepared through prepolymerization method by reacting polyethylene glycol (PEG1000) and isophorone diisocyanate (IPDI) with N-methyl diethanol amine (MDEA) as chain extender. Then FeCl3 was employed as oxidant, therefore CWPU/polypyrrole (CWPU/PPy) conductive composite was prepared by in situ chemical oxidative polymerization of pyrrole (Py) in CWPU dispersions. Effects of molar ratio of FeCl3 to Py, Py concentration on the resistivity of the CWPU/PPy composite films were investigated. The structure, morphology and thermal stability were also characterized by Fourier infrared spectra (FT-IR), light scattering, TEM, and TGA. FT-IR demonstrated the presence of hydrogen-bonding interactions between CWPU and PPy. The average particle size of CWPU/PPy increased from 10.61nm to 30.29nm compared with pure PU, and corresponding size distribution decreased from 0.850 to 0.346. It was also found that CWPU/PPy displayed as spherical morphology, and no aggregation among particles was detected among particles. TGA certified CWPU/PPy was endowed with better thermal stability. In addition, conductivity stability of composites films was also studied. It was found that composite films not only displayed low resistivity but also improved conductivity stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.