Abstract
A novel kind of hollow silica tube (HST)/cyanate ester (CE) hybrid with high thermal, mechanical, and dielectric properties for high-frequency copper-clad laminates (CCLs) was successfully developed. The curing behavior, the chemical structure of cured networks, and typical performance of HST/CE hybrids were systematically evaluated and compared with that of CE resin. Results disclose that the addition of HST into CE resin can obviously not only catalyze the curing of CE, but also change the chemical structure of resultant networks, and thus result in significantly improved mechanical, thermal, and dielectric properties. The hybrid with 0.7 wt% HST exhibits very good toughness; its impact strength is about 2.2 times of that of CE resin. The outstanding integrated properties show that HST/CE hybrids can be used as high performance structural and functional materials, especially high-frequency CCLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.