Abstract

ABSTRACTHalloysite nanotube-based inorganic–organic polymer nanocomposite has been developed with improved mechanical strength in one direction by solution mixing followed by melt mixing. Melt mixing, solution mixing, and melt-cum-solution mixing were performed to optimize the mechanical strength of the nanocomposites. The field emission scanning electron microscopic images and small-angle X-ray scattering spectrum can support the unidirectional array of halloysite nanotubes in the matrix. The tensile properties revealed that solution–melt mixing is the most desired way to develop clay-based nanocomposites. Thermal characterizations implied that thermal stability was improved after nanoclay incorporation. Dynamic mechanical analysis showed the flow properties and the “Payne effect” of the nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.