Abstract
Collagen films have been widely used in the field of biomedical engineering. However, the poor mechanical properties of collagen have limited its application. Here, rod-like cellulose nanocrystals (CNCs) were fabricated and used to reinforce collagen films. A series of collagen/CNCs films were prepared by collagen solution with CNCs suspensions homogeneously dispersed at CNCs: collagen weight ratios of 1, 3, 5, 7, and 10. The morphology of the resulting films was analyzed by scanning electron microscopy (SEM), the enhancement of the thermomechanical properties of the collagen/CNCs composites were demonstrated by thermal gravimetric analysis (TGA) and mechanical testing. Among the CNCs contents used, a loading of 7 wt % led to the maximum mechanical properties for the collagen/CNCs composite films. In addition, in vitro cell culture studies revealed that the CNCs have no negative effect on the cell morphology, viability, and proliferation and possess good biocompatibility. We conclude that the incorporation of CNCs is a simple and promising way to reinforce collagen films without impairing biocompatibility. This study demonstrates that the composite films show good potential for use in the field of skin tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.