Abstract
Porous titanium alloys have been prepared by gelcasting in this study. The elastic solid green body was first polymerized and then vacuum sintered to porous titanium alloys with low contamination by controlling sintering conditions. The microstructure and the total porosity of the vacuum sintered porous Ti-Co and Ti–Mo alloys were analyzed by using scanning electron microscopy and x-ray diffraction. Moreover, compression and bending tests were conducted to investigate their mechanical properties. The results show that open and closed three-dimensional pore morphologies and total porosity ranging from 38.34% to 58.32% can be achieved. In contrast to porous Ti by gelcasting, the compression and bending strengths of porous titanium alloys were significantly increased by adding Mo and Co with Young's modulus ranging between 7–25 GPa, which is close to that of human cortical bone, therefore being suited for potential application in load-bearing implants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have