Abstract

In order to improve the transfection efficiency of gene vectors and monitor the effect of gene therapy, this study prepared a drug delivery vector with dual functions. The thiourea reaction was used to synthesize polyethyleneimine (PEI, MW: 1.8 kDa) with superparamagnetic iron oxide nanoparticles (SPION) (PEI1800-SPION), and the lipid polycationic gene vector PEI1800-SPION loaded cationic liposome (LP-PEI1800-SPION) was further prepared by ethanol injection method. Agarose gel electrophoresis experiment, cytotoxicity experiment, and In-vitro gene silencing experiment were used to evaluate the vector and screen the optimal prescription of LP-PEI1800-SPION/siRNA. When the weight ratio of LP-PEI1800-SPION to siRNA is 20, the transfection efficiency of the nanoparticles was the highest, and the silencing efficiency of the target protein was the largest. The cytotoxicity of LP-PEI1800-SPION was low; when the concentration was in the range of 1-50 μg/mL, the survival rate of the four types of cells was above 80%. Prussian blue staining experiments and In-vitro MRI imaging experiments showed that cells had significant uptake and imaging capabilities for LP-PEI1800-SPION. In conclusion, the visualized polycationic lipid siRNA delivery vehicle (LP-PEI1800-SPION) was successfully prepared in this experiment, which provides a research basis for further theranostics of liver cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.