Abstract

Often, bacterial infections delay the rate of healing of traumatic wounds, making it critical to improve antimicrobial efficiency. In this paper, titanium nanotubes (TNT) with good antimicrobial and synergistic photothermal properties were used as the core, and mesoporous polydopamine (MPDA) thin films were constructed on their surface. Gold nanoparticles (AuNPs) with excellent photothermal conversion efficiencies (PCE) were incorporated. Finally, a large number of composite nanoparticles were added to polyvinyl alcohol (PVA) and polyethylene glycol (PEG) with wound-restoring ability, and an injectable antimicrobial hydrogel was successfully prepared by a one-pot synthesis. The antimicrobial effect of TNT@MPDA@Au nanoparticles with different concentrations was assessed by in vitro antimicrobial experiments on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The higher the concentration of nanoparticles under near-infrared light irradiation (NIR), the stronger the antimicrobial effect. The in vitro cytotoxicity of TNT@MPDA and TNT@MPDA@Au nanoparticles on 293T normal cells was tested through CCK-8 assay. The results show that both nanoparticles have favourable biocompatibility. In this paper, a three-component synergistic photothermal antimicrobial nano-antimicrobial platform was constituted by incorporating MPDA, a photothermal agent with excellent biocompatibility and photothermal properties, and AuNPs with good photothermal properties on TNT with excellent photocatalytic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call