Abstract

Tin oxide (SnO2) is a traditional gas-sensitive semiconductor with excellent response to various gases. However, its sensor performances are attenuated by the utility factor during gas diffusion in the sensing body. Therefore, the rational design of microstructure of devices is attractive and necessary because it may provide a sensible and controllable microstructure, which facilitates gas diffusion and inhibits the utility factor. Herein, the mesoporous tin oxide (MPTD) quantum dot thin film for H2S gas sensors is prepared by a facile route, which creates a mesoporous microstructure for thin films by the thermal decomposition of NH4Cl. The pore size of the thin films is controlled to be 19.36–40.13 nm. The mesoporous microstructure exhibits enhanced gas-sensing properties amounting to a 30-fold increase in response and 1/3 reduction in recovery time in H2S detection at room temperature (25 °C), with a limit of detection of 0.4 ppm. To determine the importance of sensor parameters such as pore size, film thickness, and grain size, an eXtreme Gradient Boosting (XGBoost) algorithm model was developed to examine the feature importance of each parameter on the gas-sensing performance of the MPTD sensors. The visual illustration of parameter importance is revealed to facilitate the optimization of technical preparation parameters as well as the rational design of semiconductor gas sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.