Abstract

Iron selenide (FeSe) thin films were electrodeposited onto tin oxide coated conducting glass substrates using aqueous solution mixture containing FeSO4 and SeO2 at various bath temperatures and deposition potentials. The deposited films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive analysis by x-rays (EDX) for their structural, morphological and compositional properties. X-ray diffraction patterns revealed that the deposited films are found to be tetragonal structure with preferential orientation along (100) plane. The x-ray line profile analysis technique by the method of variance has been used to evaluate the microstructural parameters such as, crystallite size, R.M.S strain, dislocation density and stacking fault probability. The influence of bath temperature and deposition potential on the microstructual parameters was investigated. The SEM observation reveals uniform surface morphology for films deposited at higher bath temperatures. The experimental observations are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call