Abstract
High energy density polymer composites with ultralow loss tangent and higher permittivity for embedded capacitors are urgently required by new generation printed circuit boards. Herein, starting from a conductive layer (C-layer) with negative dielectric permittivity, a dielectric layer (D-layer) with positive dielectric permittivity, and insulating layer (I-layer), six multilayer composites, coded as DCI, CDI, IDCI, DCICD, DCIDC, and CDIDC according to their spatial stacking order, were prepared; among them, the C-layer is a graphite/polyvinylidene fluoride composite, the D-layer is a reduced graphene oxide–(K0.5Na0.5)NbO3/cyanate ester composite, and the I-layer is a boron nitride/cyanate ester composite. The effects of relative position and spatial stacking order of three-, four- and five-layer structures on performances were intensively discussed for the first time. Results show that CDIDC has the highest dielectric permittivity (886, 100 Hz) and biggest dielectric ratio of dielectric permittivity to l...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.