Abstract

This article describes a new kind of afterglow material, ScBaZn3GaO7:Bi3+, which was synthesized through a high-temperature solid-phase method. Its crystal structure, photoluminescent characteristics, and afterglow characteristics were studied and analyzed. Upon excitation at 344 nm, ScBaZn3GaO7:Bi3+ exhibits broadband emission with a central wavelength located at 571 nm (fwhm = 172.98 nm). The sample exhibits an internal quantum efficiency of 65.1%. The bright yellow persistent luminescence of the ScBaZn3GaO7:Bi3+ sample was observed after 365 nm irradiation. Thermoluminescence spectroscopy revealed four primary traps within ScBaZn3GaO7:Bi3+, with depths of 0.676, 0.794, 0.882, and 0.972 eV. The traps located at energy levels of 0.676 and 0.794 eV were identified as the key contributors to the sample's afterglow. Finally, the ScBaZn3GaO7:Bi3+ sample was combined with a UV-LED chip to fabricate a high-power warm white-light-emitting diode (WLED) device, indicating the potential application prospect of ScBaZn3GaO7:Bi3+ phosphor in single-phase warm WLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.