Abstract

Aiming to produce qualified molybdenum (Mo) target for sputter deposition, Mo targets were prepared by utilizing powder metallurgy method in this research. The influences of sintering modes, press working modes and total deformation on microstructure and properties of Mo target were studied. Furthermore, magnetron sputtering test was conducted in vacuum environment by using the prepared Mo targets to deposit Mo thin films of which the surface morphologies, electrical conductivities, and crystalline properties were analyzed. The results show that vacuum presintering followed by hydrogen sintering mode can greatly decrease the impurity contents of Mo slabs. It is favorable to obtain the Mo target with fine and uniform grains on size and distribution by using forging mode or forging cogging mode and more than 70% total deformation. With the increase of sputtering currents of Mo target, the grain size and the thickness of the Mo thin films significantly rise, while FWHM of diffraction peaks of grain orientation (110), surface roughness and electrical resistivity of thin films decrease accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.