Abstract
ABSTRACTThe aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased tmin (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.