Abstract
A 3 2 full-factorial design was used for preparation of pellets using extrusion–spheronization technique. Independent variables were %ibuprofen (40, 60, 80) and %Eudragit RS PO/RL PO (0, 50, 100). In all formulations 3% w/w PVP K30 and 10% Avicel PH101 were also used. The pellets were cured in oven at 60 °C for 24 h. The evaluated responses were crushing strength or yield point, elastic modulus and mean dissolution time (MDT) of pellets. The cured pellets were also compressed at 15 kN compaction force and then observed under scanning electron microscope. It was shown that the cured pellets containing 40% or 60% drug exhibited a plastic deformation without any fracture under mechanical tests. The curing process resulted in significant decrease in the elastic modulus of the pellets. The SEM of the compressed pellets were also confirmed the plastic behavior of these pellets. The transition of pellet behavior from brittle to plastic upon curing was due to shift of Eudragit structure from glassy to rubbery state which was supported by DSC studies. However pellets with 80% drug showed brittle properties even after curing due to presence of less amount of Eudragit in their structure. Increasing the ratio of Eudragit RS in the pellets decreased the yield point and elastic modulus of cured pellets containing 40% or 60% drug, indicating more plastic behavior of these pellets. This was attributed to lower Tg of Eudragit RS than Eudragit RL. The curing process also retarded drug release from pellets and increased MDT. Increasing the ratio of Eudragit RS in the pellets increased MDT in cured pellets containing 40% or 60% drug but had no effect in pellets with 80% drug. Overall the results of this study revealed that thermal treating is a proper tool to produce plastic ibuprofen pellets based on Eudragit RS PO and Eudragit RL PO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.