Abstract

Objective. The purpose of the recent study was to prepare and estimate sustained release of Ethylcellulose (300 cps) and Eudragit (RS 100 and RL 100) microparticles containing Propranolol hydrochloride used as a treatment of cardiovascular system, especially hypertension. Method. Propranolol hydrochloride was microencapsulated with different polymers (Ethylcellulose, Eudragit RS, and Eudragit RL) using modified hydrophobic (O/O) solvent evaporation method using 1 : 1 combination of acetone and isopropanol as the internal phase. Obtained microparticles were showing higher batch yield with higher encapsulation efficiency. Microparticles were prepared with different ratios of 1 : 1, 1 : 3, 1 : 5, and 1 : 7 (%, wt/wt) using span 80 (%, v/v) as a surfactant. Results. The influence of formulation factors like drug: polymer ratio, internal phase, and type of polymers on obtained microparticles was characterized with respect to particle size distribution, encapsulation efficiency, percentage yield, FTIR, and FE-SEM. Higher encapsulation efficiencies were obtained with various polymers like Ethylcellulose (96.63 ± 0.5) compared to Eudragit RS 100 (83.70 ± 0.6) and RL 100 (89.62 ± 0.6). The in vitro release study was characterized by initial burst. Conclusion. The result of study displays that Ethylcellulose and Eudragit loaded microparticles of Propranolol hydrochloride can be effectively prepared using modified hydrophobic emulsification solvent evaporation technique. Therefore, the modified hydrophobic emulsion technique can also be applied to the preparation of microparticles for low molecular weight and highly water soluble drugs.

Highlights

  • Ethylcellulose, a nonbiodegradable and biocompatible polymer, one of the extensively studied encapsulating materials for the controlled release of pharmaceuticals, was selected as the retardant material for Propranolol hydrochloride

  • The purpose of the present work was to prepare and evaluate oral sustained release microparticulate drug delivery system of Propranolol hydrochloride using three different forms of polymers such as Ethylcellulose, Eudragit RS, and Eudragit RL and to evaluate the drug release from microparticles prepared by hydrophobic emulsion solvent evaporation method (O/O) with a high entrapment capacity and extended release of the drug [5, 6]

  • The aim of the current work was to encapsulate Propranolol hydrochloride with Ethylcellulose, Eudragit RS 100, and RL 100 microparticles that were prepared by modified hydrophobic solvent evaporation techniques. 1 : 1 combination of acetone and isopropanol was used as an internal phase and paraffin oil as external phase [7]

Read more

Summary

Introduction

Ethylcellulose, a nonbiodegradable and biocompatible polymer, one of the extensively studied encapsulating materials for the controlled release of pharmaceuticals, was selected as the retardant material for Propranolol hydrochloride. The purpose of the present work was to prepare and evaluate oral sustained release microparticulate drug delivery system of Propranolol hydrochloride using three different forms of polymers such as Ethylcellulose, Eudragit RS, and Eudragit RL and to evaluate the drug release from microparticles prepared by hydrophobic emulsion solvent evaporation method (O/O) with a high entrapment capacity and extended release of the drug [5, 6]. Various process and formulation parameters such as a drug polymer ratio and surfactant concentration were optimized to maximize the entrapment efficiency of the drug. These microparticles were evaluated for encapsulation efficiency, drug content, and in vitro drug release. Prepared microparticles were characterized for drug content, particle size, in vitro drug release, and kinetic release studying

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call