Abstract

AbstractA novel flame‐retardant (SPDH) containing phosphorus was synthesized through the reaction of 10‐(2,5‐dihydroxyphenyl)‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and synthesized intermediate product 3,9‐dichloro‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro[5.5] undecane‐3,9‐dioxide, which was used for optimizing the flame retardancy of ethylene‐vinyl acetate copolymer (EVM) rubber/aluminum hydroxide (ATH) composites. The microstructure of SPDH was characterized and determined by Fourier transform infrared and nuclear magnetic resonance spectroscopy. Thermogravimetric analysis (TGA) showed that SPDH had good charring effect at high temperature (600°C). The flame retardancy of the optimized EVM/ATH composites by SPDH was investigated by limiting oxygen index (LOI), cone calorimeter, and UL‐94 vertical burning tests. A higher LOI value (29.8%) and better UL‐94 rating (V‐0) can be achieved for the optimized EVM/ATH composite (EVM‐7) than EVM/ATH composite without SPDH (EVM‐3) with the total loading of additives. The heat release rate decreased and residual mass increased gradually as the loading of SPDH increased for the optimized EVM/ATH composites. There existed distinct synergistic flame‐retardant effect between SPDH and ATH in EVM matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call