Abstract

Introduction: The current research involved the study of chondroitin sulfate polymer to prevent moisture loss, which was formulated to treat dry eye. Methods: The ophthalmic formulation was prepared with 5% liquid paraffin wax, 10% carbowax, and 1% glycerine. Furthermore, its usefulness in ophthalmology was analyzed by measuring parameters like pH, isotonicity, turbidity, viscosity, % moisture loss, vapor pressure, and in-vitro and in-vivo corneal damage. Results: We successfully adjusted the pH and osmolality of the F2 formulation to the desired physiological levels, providing the opportunity to reduce the harmful reaction as well as inflammation and dehydration. In addition, viscosity plays an important role in ophthalmic preparation. Consequently, the stability studies of optimized formulation indicated no remarkable changes in physical properties, including pH, viscosity, phase separation, and turbidity. Furthermore, a vapor pressure manometer studied the percentage of moisture loss. Interestingly, the HET-CAM test correlated properly with the findings of the Draize eye inflammation test. Moreover, the in-vivo irritation test of the optimized system showed that it was tolerable, with no signs of irritation in the rabbit eye compared to the marketed formulation. In addition, the F2 formulation demonstrated better results than the marketed corneal preparation. Thereby, from the results, it can be concluded that the simple manometer apparatus can be the best method for evaluating moisture loss prevention for dry eyes. No study or investigation has been reported before for ophthalmic preparation. Conclusion: Altogether, chondroitin sulfate with carbowax 1000 and liquid paraffin-based ophthalmic preparation can be considered a promising approach for preventing dryness of the eye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.