Abstract

This paper describes the development of silica monolithic column modified with ionic liquids-gold nanoparticles (ILs-GNPs) for capillary electrochromatography (CEC). The novel ILs (1-methyl-2-mercapto-3-butylimidazolium bromide) were synthesized and used to modify GNPs functionalized silica monolithic column via the formation of a Au-S bond. The morphology of the GNPs and ILs-GNPs functionalized silica (ILs-GNPs-silica) monolithic column were characterized by transmission electron microscopy and scanning electron microscope, respectively. A cathodic electroosmotic flow was observed at pH above 6.4 on ILs-GNPs-silica monolithic column, which was reversed at acidic pH. The electrochromatographic performance of ILs-GNPs-silica monolithic column was evaluated by separation of different kinds of analytes such as hydrophobic, polar and basic compounds. The ILs-GNPs-silica monolithic column displayed enhanced hydrophobic retention characteristics in the separation of five hydrophobic n-alkylbenzenes when compared to the ILs bonded silica monolithic column. The column efficiencies for the n-alkylbenzenes were from 62,000 to 110,000 N m(-1). The ILs-GNPs-silica monolithic column exhibited reversed-phase electrochromatographic behavior toward neutral solutes. Separation of polar compounds was demonstrated on ILs-GNPs-silica monolithic column in reversed-phase CEC mode using high aqueous mobile phases. The relatively good peak shape and high separation efficiency on ILs-GNPs-silica monolithic column was obtained for basic solutes when compared to silica monolithic column modified GNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.