Abstract

Microencapsulated paraffin, a novel solar storage material, was prepared by complex coacervation technique and its performance was evaluated in terms 1of encapsulation ratio, hydrophilicity, energy storage capacity, and size distribution. The experiments were designed, based on surface response method, to optimise the processing conditions. The sizes of the microencapsulated paraffin particle were 50–100 μm. For an emulsification time of l0min and the addition of 6–8 ml (2.9−3.8% w/w) of formaldehyde (HCHO), the paraffin encapsulation ratio was found higher in different ratio of paraffin wax to coating (menu). It was also found that a higher coating to paraffin ratio leads to a higher paraffin encapsulation ratio. The hydrophilicity value of microencapsulated paraffin depended mainly on the ratio of paraffin to coating. The higher the ratio, the lower was its product hydrophilicity. In the same ratio of paraffin wax to coating, the higher concentration of HCHO led to a lower hydrophilicity of the product. The microencapsulated paraffin has shown large energy storage and release capacity (20–90 J/g) during its phase change depending on different ratios of paraffin wax to coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.