Abstract

The electrical properties of silicone composite films filled with silver (Ag) nanoparticle-decorated multi-walled carbon nanotubes (MWNT) prepared by solution processing are investigated. Pristine MWNT is oxidized and converted to the acyl chloride-functionalized MWNT using thionyl chloride, which is subsequently reacted with amine-terminated poly(dimethylsiloxane) (APDMS). Thereafter, APDMS-modified MWNT are decorated with Ag nanoparticles and then reacted with a poly(dimethylsiloxane) solution to form Ag-decorated MWNT silicone (Ag-decorated MWNT-APDMS/Silicone) composite. The morphological differences of the silicone composites containing Ag-decorated MWNT and APDMS-modified MWNT are observed by transmission electron microscopy (TEM) and the surface conductivities are measured by the four-probe method. Ag-decorated MWNT-APDMS/Silicone composite films show higher surface electrical conductivity than MWNT/silicone composite films. This shows that the electrical properties of Ag-decorated MWNT-APDMS/silicone composite films can be improved by the surface modification of MWNT with APDMS and Ag nanoparticles, thereby expanding their applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call