Abstract

In the present work we have reported the effect of temperature on the gas sensing properties of pure Polyaniline (PANI) and Multiwall carbon nanotube (MWNT) doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and MWNT doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline using ammonium persulfate in an acidic medium. The thin sensing film of chemically synthesized PANI and MWNT doped PANI composite were deposited onto finger type Cu-interdigited electrodes using spin cast technique to prepared chemiresistor type gas sensor. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature, MWNT doped PANI composite sensor shows higher response value and sensitivity with good repeatability in comparison to pure PANI thin film sensor. It was also observed that both PANI and MWNT doped PANI composite thin film based sensors showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.