Abstract
Uniformly dispersed Rh (0) nanoparticles supported on zirconia nanopowder were synthesized by a two-step and simple ex-situ method summarized by mixing rhodium (III) chloride hydrate with zirconia (nano-ZrO2) aqueous solution in ambient conditions followed by reduction with NaBH4. The ex-situ prepared nano-ZrO2 supported Rh (0) nanoparticles (Rh/nano-ZrO2) were characterized by various spectroscopic methods, including TEM, TEM-EDX, HR-TEM, P-XRD, XPS and ICP-OES. The catalytic activity of Rh (0) nanoparticles is 1050 h−1 in terms of initial turnover frequency (TOF), which is the first study in the literature to produce hydrogen by catalytic methanolysis of methylamine-borane. In addition, the catalytic methanolysis of methylamine-borane by using Rh (0) nanoparticles was carried out in different catalyst/substrate concentrations and different temperatures to reveal rate equation and kinetic parameters. Consequently, Rh (0) nanoparticles are taken into account as an encouraging catalyst for the methanolysis of methylamine-borane and for providing a more fertile hydrogen storage gain in fuel cell operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.