Abstract

This paper presents a study on the potential use of high density polyethylene (HDPE) film as wood adhesive for formaldehyde-free plywood. The physical–mechanical properties of the plywood, including thickness swelling (TS), water absorption (WA), tensile shear strength, modulus of elasticity and modulus of rupture were evaluated. Results show that HDPE film dosage positively affects the properties when ranging from 61.6 to 246 g/m2. The performance of these panels was comparable to those of plywood made with commercial urea–formaldehyde (UF) resins. Comparisons of the dimensional stability between the two plywood demonstrated that 7-day TS and WA values of the panels bonded with UF resins were 5.10 and 23.5 % higher than those bonded with HDPE film, confirming the suitability of HDPE for the use as adhesive in wood-based composites intended for indoor applications subjected to high moisture. DMA tests show that HDPE bonded plywood was significantly inferior in thermal stability at 120 °C and above while it presented almost the same dynamic mechanical properties as UF plywood when the temperature was lower than 100 °C, making it suitable to be used as geothermal floor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call