Abstract

AbstractIn this article, we report on the preparation and characterization of novel poly(vinyl chloride) (PVC)–carbon fiber (CF) composites. We achieved the reinforcement of PVC matrices with different plasticizer contents using unidirectional continuous CFs by applying a warm press and a cylinder press for the preparation of the PVC–CF composites. We achieved considerable reinforcement of PVC even at a relatively low CF content; for example, the maximum stress (σmax) of the PVC–CF composite at a 3% CF content was found to be 1.5–2 times higher than that of the PVC matrix. There were great differences among the Young's modulus values of the pure PVC and PVC–CF composites matrices. The absolute Young's modulus values were in the range 1100–1300 MPa at a 3% CF content; these values were almost independent of the plasticizer content. In addition, we found a linear relationship between σmax and the CF content and also recognized a linear variation of the Young's modulus with the CF content. The adhesion of CF to the PVC matrix was strong in each case, as concluded from the strain–stress curves and the light microscopy and scanning electron microscopy investigations. The mechanical properties of the PVC–CF composites with randomly oriented short (10 mm) fibers were also investigated. At low deformations, the stiffness of the composites improved with increasing CF content. Dynamic mechanical analysis (DMA) was used to determine the glass‐transition temperature (Tg) of the PVC–CF composites. The high increase in the Young's modulus entailed only a mild Tg increase. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.