Abstract

The highly hydrophobic poly(ether sulfone)/fluorinated silica (PES/fSiO2) organic–inorganic composite membrane for sulfur dioxide (SO2) desulfurization was prepared by incorporating the fSiO2 particles on the PES membrane via sol–gel process and fluorination. The formation of PES/fSiO2 organic–inorganic composite membrane was examined by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermal gravimetric analysis, field-emission scanning electron microscopy, and water contact angle. The experimental results showed that the fSiO2 inorganic layer was tightly bonded to the PES membrane surface through silane chemical reactions. The incorporation of the fSiO2 inorganic layer on the PES membrane surface increases the surface roughness and reduces the surface free energy because of the hydrophobic dodecafluoroheptyl-propyl-trimethoxysilane. The hydrophobicity of the PES/fSiO2 composite membrane was dramatically enhanced from 78.0° of PES membrane to 128.2° of PES/fSiO2 membrane. Compared with PES membrane, the desulfurization performance of PES/fSiO2 membrane was investigated. PES/fSiO2 organic–inorganic composite membrane indicated a reasonably stable SO2 absorption flux of 7.69E-4 mol/m2 s during the 240-min-long time operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.