Abstract

Defatted sesame meal ( approximately 40-50% protein content) is very important as a protein source for human consumption due to the presence of sulfur-containing amino acids, mainly methionine. Sesame protein isolate (SPI) is produced from dehulled, defatted sesame meal and used as a starting material to produce protein hydrolysate by papain. Protein solubility at different pH values, emulsifying properties in terms of emulsion activity index (EAI) and emulsion stability index (ESI), foaming properties in terms of foam capacity (FC) and foam stability (FS), and molecular weight distribution of the SPI hydrolysates were investigated. Within 10 min of hydrolysis, the maximum cleavage of peptide bonds occurred as observed from the degree of hydrolysis. Protein hydrolysates have better functional properties than the original SPI. Significant increase in protein solubility, EAI, and ESI were observed. The greatest increase in solubility was observed between pH 5.0 and 7.0. The molecular weight of the hydrolysates was also reduced significantly during hydrolysis. These improved functional properties of different protein hydrolysates would make them useful products, especially in the food, pharmaceutical, and related industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call