Abstract
Micrometer-sized powders with small crystallite sizes, high dispersion, and high copper contents, like Cu and/or Cu2O assembled on core particles would find potential applications in fields of catalysts, transparent conducting films and plasmonic-based technologies. Novel hydroxyapatite (HA)/copper assemblies were synthesized via a facile glucose reduction route. During hydrothermal treatment, copper ions were firstly released after dissolution of copper-modified HA, then reduced by glucose and finally assembled as shell on HA aggregates. After 12 h, cuprous oxide grew with truncated-octahedron morphology. When the reduction time was prolonged to 24 and 36 h, Cu phase was formed in situ via glucose reduction of Cu2O. Interestingly, HA/copper assemblies with well-defined morphologies were prepared under different reaction conditions. With presence of more Na2CO3, the reduction of copper ion occurred at a fast rate, which resulted in formation of spherical assemblies. Contrastingly, reduction reaction hardly occurred without Na2CO3 addition and assemblies with irregular morphology were prepared. Additionally, copper fibers with length of millimeters were prepared without Na3Cit addition. The UV–Vis absorbance peak of assemblies showed a blue or red shift due to the effect of crystalline size and/or hollowing process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have