Abstract

Hybrid sol-gel processing of inorganic-organic nanocomposites has been of a great interest over the last decades for being advantageous compared to the conventional addition methods of nanoparticles. In this study, a three-component system was adopted experiencing the design and preparation of different hybrid ceramic coatings based on Diglycidyl ether of Bisphenol A (Epoxy) and 3-Glycidyloxypropyl trimethyloxysilane (GLYMO) by sol-gel technique. The obtained hybrid coatings were cured using different hardeners, Diethylene triamine (DETA) as an organic linker and 3-Aminopropyl triethoxysilane (APTES) as an inorganic/organic linker. Microstructure assessment and the morphology of the prepared hybrids was investigated using FTIR and scanning electron microscopy (SEM) respectively. Mechanical properties (adhesion, and hardness) were determined. The degree of hydrophilicity of the hybrids was assigned depending on the contact angle measurements. Moreover, the thermal properties were investigated using thermogravimetric analysis (TGA). The results showed that the silica content plays an important role in determining the morphology as well as the mechanical, physical, and thermal properties of the coatings. The results showed an improvement in most of the properties of the hybrid coatings with increasing the silica content up to a certain extent. However, further increase in the silica content, leads to a clear deterioration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.