Abstract

Abstract Graft copolymerization of acrylonitrile and acryloyl chloride on to chitosan was prepared by γ-rays. Optimization of the grafting (%) was studied. The grafting (%) was observed to increase with increase in the irradiation dose and monomer concentration. The grafting percentages were about 52% and 36% from polyacrylonitrile and poly(acryloyl chloride), respectively. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the specimens. The modified chitosan was loaded with vitamin B12, demonstrated nearly 5.0±2.3% and 50.1±4.5% release in the media of pH 1.2 and 6.8, respectively, for amidoximated chitosan-grafted polyacrylonitrile and 3.6±1.1% and 36±2.4% in pH 1.2 and 6.8, respectively, for chitosan-grafted poly(acryloyl chloride), as determined by a traditional dissolution model. The modified chitosan specimens that uploaded with vitamin B12 displayed a more decremental release in the acidic medium than the neutral one. However, in order to incorporate in vivo gastrointestinal conditions, such as acidic pH and high water content in the stomach, low water content, and the presence of semi-solid mass in the large intestine, a new model, called flow through diffusion cell, was also used to study the drug release. The results of the two approaches produced different release profiles at the same pH values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.