Abstract

Microwave-absorptive polymeric composite materials are becoming important to protect interference of any communication systems due to the increase in the use of microwave-inducing devices. In this work, the microwave-absorptive polyurethane composites are prepared using natural zeolites of Sarulla North Sumatra and commercial ferric-oxide as fillers. Weight ratio of the natural zeolite to ferric oxide were varied (18:2; 16:4; 14:6; 12:8 and 10:10) by weight. The fillers are prepared using ball milling technique and characterized using Particle Size Analyzer for particle size distribution. The nanocomposites, prepared using in-situ reaction of polyethylene glycol and toluene diisocyanate, is characterized for physical and mechanical properties using tensile strength, thermal properties with TGA techniques, as well as morphological and chemical properties using scanning electron microscopy. Composition and loading of the nanofillers against polyurethane matrices is 20% by weight. Microwave-absorption properties of the nanocomposites is characterized using 8-12GHz frequency. Tensile strengths of the natural zeolite-ferric oxides polyurethane nanocomposites shows higher values when matrices filled with lower ferric-oxide, which could be due to the nanozeolites have functioned as reinforcement for the polyurethane matrix through polar-polar interaction between the filler surfaces with the matrices. The microwave absorption properties, which investigated by Vector Network Analyzer, of the nanocomposites filled in polyurethane with the ratio of nanozeolite to ferric oxide filler of 12:8 shows reflection loss of – 13.2dB. This condition was observed at 11.1GHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.