Abstract
SiO 2–ZrO 2 pillared montmorillonite (SZM) was prepared by the reaction of Na-montmorillonite with colloidal silica–zirconia particles which were prepared by depositing zirconium hydroxy cations on silica particles. By pillaring with the colloidal particles, the basal spacing of montmorillonite was expanded to ca. 45 Å and the calcined SZM samples showed large specific surface areas up to 320 m 2/g at 400 °C. In spite of large interlayer separation, adsorption results indicated the presence of micropores generated between the colloidal particles. The microporous structure was maintained at least up to 600 °C and exhibited specific shape selectivity for the adsorption of large organic molecules, especially between toluene and mesitylene. According to the temperature-programmed-desorption (TPD) spectra of ammonia, the calcined SZM showed weakly acidic sites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have