Abstract
Microporous layers on titanium (Ti) are formed by chemical treatment in highly concentrated alkaline media, and their properties and growth mechanism are examined using electrochemical techniques, in situ resistometry, scanning electron microscopy (SEM), grazing-incident X-ray diffraction (GIXRD), and glow discharge optical emission spectroscopy (GD-OES). Chemical treatment in a 5 M aqueous KOH solution yields results superior to those from the same treatment in a 5 M aqueous NaOH solution, while a 3 M aqueous LiOH solution does not produce porous layers. The cation constituting the solution plays a vital role in the process. An SEM analysis reveals that the KOH solution is the most effective in forming microporosity and that the longer the treatment time, the more porous the near-surface layer. The results of GIXRD analysis show the presence of Na(2)Ti(5)O(11) and K(2)Ti(6)O(13) in the layers formed in the NaOH and KOH solutions, respectively; in the case of the LiOH solution, TiO(2) is formed. Chemical treatment in the NaOH and KOH solutions resembles a general corrosion process with the existence of local cathodic and anodic sites. The reduction reaction produces H(2), some of which becomes absorbed in the near-surface region of Ti, while the oxidation reaction produces the above-mentioned compounds and/or an oxide layer. The presence of hydrogen (H) within the solid is detected using GD-OES. The H-containing near-surface layer partially dissolves, yielding a microporous structure. The development and dissolution of the H-containing near-surface layer of Ti upon chemical treatment in the NaOH and KOH solutions are confirmed by resistometry measurements. They point to the formation of a compact passive layer on Ti upon exposure to the LiOH solution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have