Abstract

AbstractIron oxide nanoparticle/Poly(ethylene terephthalate) (PET) nanowebs were obtained by electrospinning. To achieve superparamagnetic properties, iron oxide nanoparticles with diameters below 25 nm were used. Diameter distribution of iron oxide nanoparticles was measured by a particle size analyzer. Iron oxide nanoparticles were added into 16 wt % PET solution in the ratio of 5, 10, and 15 wt % to PET. The morphology of iron oxide nanoparticle/PET nanowebs was observed using field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM). The nanofiber diameter increased as increasing iron oxide nanoparticle concentration. The superparamagnetic behavior of iron oxide nanoparticle/PET nanofiber was confirmed using superconducting quantum interference device (SQUID). The degree of crystallinity of iron oxide nanoparticle/PET nanowebs was calculated from a differential scanning calorimeter (DSC) results. The change of flexural rigidity and tensile properties of electrospun iron oxide nanoparticle/PET nanowebs with the external magnetic field were examined ISO 9073‐7 testing method, universal testing machine and an appropriate magnet. Also, the elastic modulus of iron oxide nanoparticle/PET nanofiber was measured using nanoindentation. With applying magnetic field, the improvement in mechanical properties of field‐responsive magnetic nanofibers and nanowebs was confirmed. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call