Abstract

Effect of various silicon sources, such as TEOS, MTES mixed with TEOS and 1,3,5-tris(triethoxymethyl) on SiO2 films was investigated. The synthesized solutions were used as silicon sources to prepare silica-like backbone films. The investigation showed that all precursors can able to produce the flat and uniform films. An FTIR spectrum confirmed the formation of SiO2 in film matrix. The results indicated that the internal microstructure of each film is different. The incorporation of less polar bonds such as F and C was carried out using various Si sources, while the introduction of these sources confirmed through FTIR spectra. Optical properties of the films were carried out by using ellipsometric porosometry (EP) measurement. The leakage current density for the films prepared by using TEOS, MTES and 135TTEB was observed to be 2.8 × 10-7 A/cm2, 2.9 × 10-8 A / cm2, and 4.1 × 10-6 A / cm2, respectively, at 1 MV/cm electric field strength by the IV curves obtained by semiconductor characterization after fabricating MIS devices. The calculated dielectric constants from RI of the deposited SiO2 films were 2.0, 1.9 and 2.5 respectively. When the microstructure of the precursor solution changed, the introduction of atomic morphology or terminal inerted group ratio changed the internal bridging mode of SiO2, and thereby significantly reduced the dielectric constant and improved insulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.