Abstract

The poly(styrene-methyl methacrylate) latex particles as potential physical shale stabilizer were successfully synthesized with potassium persulfate as an initiator in isopropanol-water medium. The synthesized latex particles were characterized by Fourier transform infrared spectroscopy (FT-IR), particle size distribution measurement (PSD), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). FT-IR and TGA analysis confirmed that the latex particles were prepared by polymerization of styrene and methyl methacrylate and maintained good thermal stability. TEM and PSD analysis indicated that the spherical latex particles possessed unimodal distribution from 80 nm to 345 nm with the D90 value of 276 nm. The factors influencing particle size distribution (PSD) of latex particles were also discussed in detail. The interaction between latex particles and natural shale cores was investigated quantitatively via pore pressure transmission tests. The results indicated that the latex particles as potential physical shale stabilizer could be deformable to bridge and seal the nanopores and microfractures of shale to reduce the shale permeability and prevent pore pressure transmission. What is more, the latex particles as potential physical shale stabilizer work synergistically with chemical shale stabilizer to impart superior shale stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.