Abstract

The highly conductive and elastic three-dimensional mesh porous material is an ideal platform for the fabrication of high electrical conductivity conductive aerogels. Herein, a multifunctional aerogel that is lightweight, highly conductive and stable sensing properties is reported. Tunicate nanocellulose (TCNCs) with a high aspect ratio, high Young's modulus, high crystallinity, good biocompatibility and biodegradability was used as the basic skeleton to prepare aerogel by freeze-drying technique. Alkali lignin (AL) was used as the raw material, polyethylene glycol diglycidyl ether (PEGDGE) was used as the cross-linking agent, and polyaniline (PANI) was used as the conductive polymer. Preparation of aerogels by freeze-drying technique, in situ synthesis of PANI, and construction of highly conductive aerogel from lignin/TCNCs. The structure, morphology and crystallinity of the aerogel were characterized by FT-IR, SEM, and XRD. The results show that the aerogel has good conductivity (as high as 5.41 S/m) and excellent sensing performance. When the aerogel was assembled as a supercapacitor, the maximum specific capacitance can reach 772 mF/cm2 at 1 mA/cm2 current density, and maximum power and energy density can reach 59.4 μWh/cm2 and 3600 μW/cm2, respectively. It is expected the aerogel can be applied in the field of wearable devices and electronic skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call