Abstract

Fe,Co,Si-pillared montmorillonites with micro- and mesopores and high thermal stability were prepared by directly introducing transition metal ions (Fe and Co) and aminosilanes to the interlayer of calcium montmorillonite (Ca-Mt) from Inner Mongolia. The presence of Fe, Co and Si in the interlayer spaces of montmorillonite (Mt) and properties of these pillared Mt were investigated by a combination of X-ray diffraction, elemental analysis, N2 adsorption-desorption, thermal analysis, NH3 temperature-programmed desorption and H2 temperature-programmed reduction capacity tests techniques. The results indicated that the enhanced physicochemical properties of pillared Mt could be attributed to the formation of Fe, Co and Si composite pillars supporting the interlayer space. Particularly, aminosilane played an important role in improving the basal spacing and thermal stability of pillared montmorillonites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.