Abstract

Extracellular vesicles (EVs) are heterogeneous membranous vesicles secreted by every cell type and offer significant potential in therapy and diagnostics. Differential ultracentrifugation is the gold standard for EV isolation, although other techniques including, polyethylene glycol (PEG) precipitation, immunoprecipitation, size exclusion chromatography, and immuno-isolation approaches are common. Purified EVs can be characterized based on their physical characteristics, biochemical composition, or cell of origin. For size and concentration measurement, nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), and electron microscopy are commonly employed methods. Biochemical analyses of EVs are typically performed using flow cytometry, immunoblotting, or proteomic investigation. Based on tissue of origin, EVs have specific markers that can be used to isolate and purify specific cell-associated EVs using an affinity selection approach. Despite existence of several methods for isolation and characterization, major limitations associated with each method hinder the progress of the field. Evolving concepts in EV biology possess great promise for better isolation and characterization leading to a better insight of biological function and have immense clinical implications. In this review, we discuss recent advancements in EV isolation and characterization approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.