Abstract

Lignocellulose nanofibrils (LCNFs) were prepared using Liriodendron tulipifera L. wood flour. Electrospun nanofibers were fabricated by mixing the LCNFs with poly(vinyl alcohol) (PVOH). The lignin and hemicellulose contents of the wood flour were controlled with an alkaline-peroxide treatment at a pH of 11.5 using various hydrogen peroxide concentrations. The morphological characteristics, mean diameter, and filtration time of the LCNFs subjected to wet disk milling (WDM) and high-pressure homogenization were determined. Furthermore, the spinning suspension viscosity was measured with various LCNF concentrations and PVOH/LCNF addition ratios. After the alkaline-peroxide treatment, the lignin and hemicellulose contents decreased with an increasing hydrogen peroxide concentration and reaction time. As the lignin content decreased, the nanofibril diameter decreased and the filtration time increased. The diameter decreased further after the homogenization treatment following WDM. The viscosity of the mixed solution increased with an increasing PVOH and LCNF mixed solution concentration and LCNF addition ratio, and decreasing lignin content. Scanning electron micrographs revealed that the diameter of the electrospun nanofibers increased as the mixed solution concentration and LCNFs addition increased, the lignin content decreased, and with the homogenization treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call