Abstract
Synthesis of copper oxide (CuO) nanorods was achieved by thermal decomposition of the precursor of CuC2O4 obtained via chemical reaction between Cu(CH3COO)2·H2O and H2C2O4·2H2O in the presence of surfactant nonyl phenyl ether (9)/(5) (NP-9/5) and NaCl flux. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), selected-area electron diffraction (SAED) and high-resolution TEM (HRTEM) were used to characterize the structure features and chemical compositions of the as-made nanorods. The results showed that the as-prepared nanorods is composed of CuO with diameter of 30–100 nm, and lengths ranging from 1 to 3 μm. The mechanism of formation of CuO nanorods was also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have