Abstract
An eco-friendly CuBO2-based photocatalyst has been doped by a lanthanide for the first time. Gd3+ and Gd3+/Bi3+-doped CuBO2 are synthesized by the hydrothermal method to study their magnetic properties. Then they are analyzed by XRD, UV-Vis, SEM, and VSM. The maximum amount of doping is x= 0 − 1.5% in Cu1–3xGd3xBO2 and Cu1–3xBi3x/2Gd3x/2BO2 formulas as they are analyzed in XRD. For concentrations higher than x = 2%, the additional peak indicates that doping is incomplete. The XRD pattern of CuBO2 confirms that its crystal structure is a hexagonal one with the R3 ̅m space group. According to UV-Vis analysis, the bandgap energies are 2.711, 2.753, and 2.765 for CuBO2 and doped systems. Additionally, the morphology of particle sizes is confirmed according to SEM images. Meanwhile, the magnetic properties of synthesized material are studied by VSM, and the doped compound exhibited higher magnetic properties than CuBO2, which is associated with the exchange interaction of electron and d spins in Gd3+ and Bi3+. The study aims to provide insights into the magnetic properties of lanthanide-doped CuBO2-based photocatalysts, potentially paving the way for developing improved magnetic materials for various applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have