Abstract

Se-containing precursor films with two different compositions were prepared by magnetron sputtering from and targets, and then were selenized using Se vapor. The effects of precursor composition and selenization temperature on the film properties were investigated. The results show that Se phase plays a critical role in film growth and electrical properties of CIGS films. The Cu-rich films exhibit different surface morphology and better crystallinity, as compared to the Cu-poor films. All the CIGS films exhibit p-type conductivity. The resistivity of the Cu-rich films is about three orders of magnitude lower than that of the Cu-poor films, which is attributed to the presence of p-type highly conductive Se phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.