Abstract

Synthesis of chitosan/ZnO nanoparticles was performed using different concentrations of ZnO at different temperatures. Nanoparticles of ZnO/chitosan were prepared in rod form with average length 60 nm and average width 5–15 nm. Thus, obtained nanoparticles of ZnO/chitosan were characterized using UV spectrophotometer, FTIR, TEM, X-ray, and SEM. Size and shape of chitosan/ZnO nanoparticles relied on conditions of their synthesis. Notably, chitosan/ZnO in rod form with average length of 60 nm and average width 5–15 nm could be achieved. Application of chitosan/ZnO nanoparticles to cotton fabric conferred on the latter antibacterial and UV protection properties. Cotton fabric was characterized using SEM, ultraviolet protection factor (UPF) rating, and antibacterial (gram-positive and gram-negative) characteristics. Finished cotton fabric exhibited good antibacterial properties against gram-positive and gram-negative bacteria. The UV testes indicated a significant improvement in UV protection of finished cotton fabric which is increasing by increasing the concentration of nanoparticles of ZnO/chitosan.

Highlights

  • Chitin, the second most abundant biopolymer, widely distributes in nature as the principal component of exoskeletons of crustaceans and insects as well as of cell walls of some bacteria and fungi

  • The second most abundant biopolymer, widely distributes in nature as the principal component of exoskeletons of crustaceans and insects as well as of cell walls of some bacteria and fungi. It is a glucose-based unbranched polysaccharide. It differs from cellulose at the C-2 carbon where an acetamido residue locates instead of a hydroxyl group

  • The structure of chitosan is very similar to that of cellulose; it consists of β(1-4)-linked D-glucosamine residue with the 2-hydroxyl group being substituted by an amino or acetylated amino group

Read more

Summary

Introduction

The second most abundant biopolymer, widely distributes in nature as the principal component of exoskeletons of crustaceans and insects as well as of cell walls of some bacteria and fungi Chitosan is soluble in diverse acids and able to interact with polyanions to form complexes and gels Hybrid materials based on chitosan have been developed, including conducting polymers, metal nanoparticles, and oxide agents, due to excellent properties of individual components and outstanding synergistic effects simultaneously [9]. This work is focused on (i) preparation and characterization of chitosan/zinc oxide nanorods complex using precipitation method and (ii) application of chitosan/ZnO nanoparticles on cotton fabric to impart antibacterial properties and UV protection

Experimental
Characterization
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call