Abstract
Protein separations were carried out by micro-high performance liquid chromatography (micro-HPLC) with surface alkylated monolithic columns, which were prepared by in situ copolymerization of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EGDMA) in the presence of dodecanol and toluene as porogens. First, glycidyl groups at the surface of the porous monolith were hydrolyzed with sulfuric acid. The hydroxyl groups thus formed were then reacted with n-alkyl chloride to form alkylated stationary phase. Separation performance for proteins on columns with C18 and C8 stationary phases was compared. The results showed that a poly(GMA-EGDMA) support derivatized with octadecyl moieties could achieve much better resolution than one with octyl groups. A protein mixture was separated with the octadecylated poly-(GMA-EGDMA) monolithic column, and the effluent peaks were collected and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The physical properties of the monolithic columns such as column morphology, surface area, mesopore size distribution, and column permeability were further characterized by scanning electron microscopy (SEM), multipoint BET nitrogen adsorption/desorption, and Darcy's law, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have