Abstract
Cell culture microenvironment and hepatocyte-specific three-dimensional tissue-engineering scaffold play important roles for bioartificial liver devices. In the present study, highly porous sponge scaffolds composed of chitosan (CS) and galactosylated hyaluronic acid (GHA, galactose moieties were covalently coupled with hyaluronic acid through ethylenediamine), were prepared by freezing-drying technique. Because the growth factors specifically bind to heparin with a high affinity and biological stability of the growth factors are modulated by heparin. Heparin was added into CS/GHA scaffold under mild conditions. The effects of heparin on the morphology, structure, porosity, mechanical properties of the CS/GHA/heparin scaffold were studied. CS/GHA scaffold containing heparin maintains the porous structure and good mechanical properties. Furthermore, addition of heparin with the growth factors into the scaffold resulted in a significantly improved the microenvironment of cell growth and prolonged liver functions of the hepatocytes such as albumin secretion, urea synthesis and ammonia elimination. These results indicate that this CS/GHA/heparin scaffold is a potential candidate for liver tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.