Abstract

Abstracta- and b-axis-oriented epitaxial Bi4Ti3O12 films were prepared on (101)TiO2 substrates (rutile) at 600°C by metalorganic chemical vapor deposition (MOCVD). Subsequently, the same films were similarly prepared on (101)-oriented conductive materials with the same rutile structure and similar lattice parameters as TiO2, such as RuO2 and IrO2. Their perfect epitaxial growth was confirmed by several X-ray diffraction measurements. RuO2 and IrO2 were deposited on not only structurally equivalent (101)RuO2//(101)TiO2 and (101)IrO2//(101)TiO2 structures, but were also successfully deposited on the corundum (012)Al2O3 and (110)Al2O3 single crystals by the MOCVD and rf-sputtering method, respectively. A well-saturated P-E hysteresis with a remanent polarization above 20 μC/cm2 was observed for a- and b-axis-oriented Bi4Ti3O12-based materials, (Bi4−xNdx)(Ti3−yVy)O12 (BNTV), that were epitaxially grown on rutile-rutile and rutile-corundum stacking structures. These results should enable broader application of the bismuth layer-structured ferroelectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call