Abstract
AbstractSilicone rubber (SR)/organoattapulgite (OAT) composites were prepared with γ‐irradiation crosslinking at a dose range varied from 30 to 300 kGy. Natural fibrillar silicate attapulgite (AT) was modified by silane coupling agent, and the obtained OAT was used as reinforcing fillers in SR. The effect of irradiation doses on the degree of crosslinking of SR/OAT composites was determined by solvent swelling method. It was found that the molecular weight between crosslinks (Mc) reduced with the increase in irradiation doses. Moreover, the addition of OAT to SR matrix promoted an increase in the crosslinking density of the composites because of the presence of the active crosslinking sites of OAT. The mechanical properties of the SR/OAT composites including tensile strength, elongation at break, and Shore A hardness subjected to various irradiation doses were studied. The experimental results showed that the tensile strength, elongation at break, and Shore A hardness were all improved significantly in the presence of OAT, which indicated that OAT was an alternative reinforcing filler of SR. In addition, the effect of various irradiation doses on the mechanical properties of SR and SR/OAT composites was also investigated. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have